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ABSTRACT

The ability to predict failure loads in notched composite laminates is a requirement in a variety of

structural design circumstances. A complicating factor is the development of a zone of damaged

material around the notch tip. The objective of this study was to develop a computational

technique that simulates progressive damage growth around a notch in a manner that allows the

prediction of failure over a wide range of notch sizes. This was accomplished through the use of

a relatively simple, nonlocal damage model that incorporates strain-softening. This model was

implemented in a two-dimensional finite element program. Calculations were performed for two

different laminates with various notch sizes under tensile loading, and the calculations were found

to correlate well with experimental results.



1 INTRODUCTION

The design of structural components made of composite materials is heavily influenced by damage

tolerance requirements. The problem of predicting failure in notched laminates has been the

subject of numerous studies. A review of those occurring before 1985 can be found in Awerbuch

and Madhukar.1 All failure theories that have been developed contain empirical parameters such

as a characteristic length. Unfortunately, these parameters are not always true material properties

because they appear to be functions of notch size; i.e., the parameter value that leads to a correct

failure prediction for small notches does not usually work well with large notches. 2

In a composite material a zone of damage of considerable influence is known to develop in

advance of a crack. Recent research 3 indicates that the damage growth in the vicinity of the crack

tip manifests itself in the form of strain-softening of the material. Strain-softening models have

received a great deal of attention for describing the fracture of concrete and other materials where

microstructure has a strong influence on macroscopic properties. In general, a macroscopic

description of damage (e.g., distributed cracking) is reflected in a constitutive model that exhibits

a decrease of stress with increasing strain beyond some critical strain e d as shown in Fig. 1. The

incorporation of strain-softening into a finite element analysis based on classical plasticity theory

results in calculations that are mesh sensitive. This occurs because as the mesh is refined, there is

a tendency for the damage zone to localize to a zero volume. This leads to the prediction of

structural failure with zero energy dissipation, which is physically impossible. Numerous

techniques have been proposed to address this issue.

Two of these techniques that hold promise for modeling damage growth in composite

structures are the discrete crack model and the nonlocal damage model. The discrete crack model

avoids the zero energy dissipation problem by using a stress-displacement law over the damage
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zone rather than a stress-strain law. These models were pioneered by Hillerborg et al.4 who used

a Dugdale-Barrenblat s,6 type model to represent the damage zone ahead of the crack. Backlund

and Aronsson 7'8 extended this concept to composite materials. This approach is straightforward

but lacks generality because the crack path must be assumed beforehand. Alternatively, the

nonlocal damage model offers the same advantages of the discrete crack model but avoids its

shortcomings.

Rudimentary damage mechanics based upon local constitutive relations can be used to

successfully model strain softening. Better yet, damage evolution based upon the concept of a

nonlocal continuum prevents unacceptable localization of the damage. The basic idea in a

nonlocal continuum is that the stress at a point in a body is dependent on the strains of neighbor-

ing points in addition to the strain at the point. In its most general form, this theory, which can be

tied to a statistical analysis of heterogeneous materials, can lead to nearly intractable mathematical

complexity. Bazant and Chang 9 modified this theory and incorporated it into a finite element

analysis that could handle strain-soitening without spurious mesh sensitivity. Unfortunately, this

approach proved to be inconvenient in practical applications because it required an imbricated

system of elements overlapping one another. Recently, Bazant and Pijaudier-Cabot _° removed

this difficulty with the introduction of a nonlocal damage theory which incorporates nonlocal

principles into continuum damage mechanics. In this theory only the damage parameter is

considered to be nonlocal (i.e., a function of the strain averaged from a certain neighborhood of a

point) while all other variables are local. Bazant u justified the validity of this approach using a

simplified micromechanical analysis to show that fracturing strain due to damage is the result of

the release of stored energy from a finite size microcrack neighborhood. Bazant and Lin _2

incorporated the nonlocal damage concept into a two-dimensional finite element analysis and
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applied it successfully in predicting failure of concrete. DeVree et al. 13also developed a nonlocal

damage finite element analysis for isotropic materials.

The objective of this study was to develop a technique that simulates progressive damage

growth around a notch in a composite laminate and that can be used to predict failure. This was

accomplished by applying a relatively simple nonlocal damage model to fiber-reinforced compos-

ites. This model was implemented in a two-dimensional finite element program. Calculations

were performed, and the results wi_re compared to data from fracture tests.

2 STRESS-STRAIN RELATIONS FOR A DAMAGED LAMINATE

The analysis of a composite laminate will not be done on a ply-by-ply basis, but rather it will

simply be considered as a homogeneous material with orthotropic material properties. Treating

the material as being in a state of plane stress, the stress-strain relations in principal material

coordinates (x I and x2) for undamaged material can be written as

{_} = [c]"{o}

where

{_}T= [e_ _2 _'_2]

{O}T=[O, O5 _,_]

Cn = E_/(1 - v n v2_), C_, = Ez/(l - v n v2_), Css = Gn

Cn = C21 = v_2 E2/(I - v_2 v21), C13 m C2 3 m C31 = C3 2 = 0.

When damage occurs (microcracking, etc.) the effective load-carrying area of the material is

reduced. We introduce the concept of an effective stress _48 = o/(l-D) to account for this area

reduction. The quantity D is the damage variable which ranges from 0 (no damage) to I

(development of a macrocrack).

O)

(2)

(3)

(4)

For simplicity we assume that damage develops independently in
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the Xl and x 2 directions.

expressed in general form as _s

where

For this orthotropic damage development, the effective stress can be

{6} = [M] {o}

{0} T --_ [61 (_2 "_12]

Mll : 1/(l-D1) , Mz2 = 1/(1-D2) , M33 = 1/1_/_1 _/1-D 2

M1z = M13 = M23 = M21 = M31 = Msz = 0.

(5)

(6)

(7)

We now take the same approach as Chow and Wang xs and use the elastic energy equivalence

concept that states that the complementary elastic energy for a damaged material is in the same

form as that of an undamaged material except that the stress is replaced by the effective stress in

the energy formulation, i.e.,

w = 1 {O)T [C]_a {0) (8)
2

1 {(I} T [M]T [C]_ 1 [M] {o} . (9)
2

The stress-strain equation for a damaged material can be written as

or

where

OW _ [M]T [C]_1 [M] {o} (10)
{e} - O{o}

{e} = [_]-i {o} (11)

[_]-_ = [M]T [c] -_ [M]

Alternatively, we can write

(12)
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(o} --[_]{e} (13)

where

(_,, = E, (1-DI) 2 / (1-v12v21)

(_12 = (_21 = v21EI (1-Dl) (1-D2) / (l-v12v21)

(_22 = E2 (1-D2)2 / (1-v12v21)

{_33 = G12 (I-DI) (1-D2)

C13 = C23 = (_31 = (_32 = 0 .

In the finite element formulation, we may have the material coordinates x 1 and x2 at some

angle 0 relative to the global coordinates x and y. We can transform the stresses and strains

(14)

through the usual transformation relations to get

{o} = [To]{o'} (15)

{e} = [T,]{e'} (16)

{o'}_= [ox% t_y]

{e'} r= [ex % "t_]

[To] =

cos20 sin20 2sin0 cos0 ]
/

sin20 cos20 -2sin0 cos0 /

-sin0 cos0 sin0 cos0 cos20 - sin20]

[T,_] =

and

cos20 sin20 sin0 cos0 ]
/

sin20 cos20 -sin0 cos01 .

-2sin0 cos0 2sin0 cos0 cos 2 -sin20]

where

(17)

(18)

(19)

(20)
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Combining eqns (13), (15), and (16) gives

{o'} = [(:'] {e'}

where

[C_'] = [To] -1 [C] [T,].

(21)

(22)

3 DAMAGE DEVELOPMENT

In the nonlocal damage model, the damage parameters D x and D 2 are assumed to be

functions of the nonlocal strains el and e2 defined as

1
_,(x,y) - ff _(_-_ n-y) _EI(_,I_)d_ dTI

A (_,y) JJA
(23)

_2(x,y ) _ 1
Ar(x,y ) ffA a(_-x, rI-y) e2(_,rl) d_ dr I

(24)

where

Ar(x,Y) = _(e-_, n-y) d_ dr I (25)

and a(_-x, rl-y) is a weight function which we have chosen in the form suggested by Bazant, 16 i.e.,

: {, =
[ 0-8256 Q2 ]J

where _ is the characteristic length for the material, and a equals zero if the quantity within

brackets becomes negative. The relationship between the damage parameter and the nonlocal

strain is determined from the stress-strain curve. Consider the case ofa uniaxial load Oo in the xl

direction. For this case eqn (11) gives

eI = o o / El(1 - DI) 2 • (27)
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Sincee, is uniform, the nonlocal strain _, is simply equal to e_ for all points except those in a

boundary layer around the edges which will be ignored.

D 1 = 1 - (%/E 1_1) v2.

Solving eqn (27) for D_ gives

(28)

The shape of the stress-strain curve after the initiation of damage (i.e., the relationship between o_

and e t for et > e,a ) determines how D_ is related to e,. This ultimately leads to an explicit

mathematical representation for D 1 as

D, = f, (El)" (29)

A similar relationship can be found for D2, i.e.,

D2 = f2 ('62) • (30)

Equations (21), (23), (24), (29), and (30) completely describe the stress-strain behavior of the

laminate.

4 FINITE ELEMENT FORMULATION

To develop a finite element formulation for progressive damage analysis, we begin with

the principle of virtual work _7

fv dV= fs ds (31)

where {_'} is the strain associated with the virtual displacement {d}, {fi}s is the virtual displace-

ment of the surface of the body, and {f} is the traction on the surface of the body. We will

develop this analysis for an 8-node quadrilateral element. Using the usual shape functions of this

element, _8we can express the displacement [U]m within an element m in terms of the nodal

displacement {U} as

{u}m = [L],.{0}. (32)
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Applying the two-dimensional strain-displacement relations to eqn (32), we arrive at the following

relationIgbetween strainand nodal displacement

{e'}m = ['B]m{U} • (33)

Substitutingeqns (32)and (33)intoeqn (3I)gives

m_ Lm [B]T {O'}m dVm : Em _m [LITre {f}m dSm' (34)

Substituting eqn (21) into eqn (34) gives

( m_ fv m [B]Tm [(_']m [B]m dVm) {U} = m_ fs m [L]Tm {qm dSm " (35)

We now set

Thus

= [C ]m [B]m dVm (36)[K] fVm[B]:-'

{R): E f,mILls {f}m dSm" (37)

[K] {U} = {R} (38)

where [K] is the stiffness matrix and (R} is the generalized nodal load matrix. After damage

initiates, eqn (38) represents a nonlinear system of algebraic equations because [K] is a function of

D 1 and D 2 which depend on the nonlocal strains. The nonlocal strains in eqns (23) and (24) are

evaluated numerically using Gaussian integration. Equation (38) can be solved iteratively using

the Newton-Raphson method.17

Based on the above analysis, a computer program was developed and calculations were

performed for the case of a center-cracked plate under tension, as shown in Fig. 2. It was found

that convergence difficulties arose for materials whose stress-strain curves had softening regimes

with steep slopes. To overcome these difficulties we made use of a procedure based on the

concept of viscous relaxation) _ We introduced a small amount of viscous damping into the
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analysisandtreatedtheproblem dynamically (without inertia effects) so that eqn (3 8) was

replaced by

[cd] {u} + [K] {U} = {R} (39)

where [C_] is the damping matrix and {0} is the time derivative of {U}. To solve the above

differential equations numerically, we used the trapezoidal rule of time integration) 7 i.e.,

'*A'{u} = '{u} + At( '{U} + '+_'{0})/2 (40)

where the superscript in front of the variable indicates the time at which it is evaluated. For the

damping matrix we employed Rayleigh damping, i.e.,

[cA = 13[K]. (41)

We found that a value of_ = 0.0] sec "1 for a time step At = 1 sec eliminated the conver-

gence problems and also reproduced results that were within a fraction of a percent of previous

static calculations.

5 RESULTS

Calculations were performed for a 13-ply laminate ofgraphitegepoxy with a

[45/-45/90/0/60/-60/90/-60/60/0/90/-45/45] lay-up. The laminate stiffness properties were Ex

=36.3 GPa, Ey =61.5 GPa, V_y= 0.28, and G_y =20.7 Gpa.. The softening portions of the stress-

strain curves were represented by exponential functions:

ox = E x ea_e -agcx-ed_)

Oy = Ey Edy e -ay(Ey-EdY)

(42)

(43)

with ¢d_ = 0.01101, a_ = 2000, ¢dy = 0.00984, ay = 600, and a characteristic length Q= 0.762 cm.

The stress-strain curve for the y-direction is shown in Fig. 1. The values for ed_ and Edy came

from tensile tests. 2 Measuring the softening properties in a standard tensile test is extremely
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difficult to do) ° Therefore, these values were chosen in an inverse manner to match data from

fracture tests described next.

A center-cracked plate under tension as shown in Fig. 2 was analyzed with the program

for a crack length 2a = 6.35 cm. and a specimen width W = 25.4 cm. An applied load Oo was

simulated by gradually displacing the top boundary while holding the bottom boundary fixed as

would be done in a tensile test. Load versus displacement was monitored during the calculation,

and when the load reached its peak value and began to decline, the specimen was assumed to fail.

Calculations were performed for three different quarter-symmetry meshes as shown in Fig. 3

where MESH 1 is a coarse mesh, MESH 2 is a moderately fine mesh, and MESH 3 is a very fine

mesh. A reflecting algorithm had to be used to correctly calculate nonlocal strains in elements

near a symmetry boundary. The load versus displacement results for these three meshes are

shown in Fig. 4. It can be seen that the solution converges with mesh refinement, and the

difference in failure load between MESH 2 and MESH 3 is less than 0.5 percent. The calculations

were repeated for various crack lengths between 0 and 30.5 cm. with W/2a = 4. A plot of

nominal failure stress (applied force divided by total cross-sectional area) versus crack length is

shown in Fig. 5. Also shown are experimental results from fracture tests. 2 It can be seen that the

theory is capable of representing the failure load over a wide range of crack lengths.

The extent of the damage zone (i.e., material that has passed into the strain-softening

regime) was also monitored during the calculation. As expected, the damage zone originated near

the crack tip and grew primarily in the horizontal direction away from the tip. The distance from

the crack tip to the outer edge of the damage zone as a function of load for three different crack

lengths is shown in Fig. 6. In each case damage does not initiate until the applied load is very

close to the failure load. After damage initiates, it grows rapidly.
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Thecalculationsjust describedwererepeatedfor a 15-ply laminateof graphite/epoxywith

a [-45/45/0/90/-30/30/-75/0/75/30/-30/90/0/45/-45]lay-up. Thelaminatestiffnessproperties

wereEx=56.0Gpa,Ey=46.5Gpa,V_y=0.342,andG_=19.6Gpa. Again,thesofteningportionsof

the stress-straincurveswererepresentedbyexponentialfunctionswith Cdx=0.0072,ax=20,

e,,y=0.0072, ay=20, and a characteristic length 1_=0.254 cm. The stress-strain curve for the y-

direction for this laminate is shown in Fig. 7. Comparing this to Fig. 1, we observe that the

softening portion of the curve for this laminate is much less steep than that of the 13-ply laminate.

A plot of nominal failure stress versus crack length for the 15-ply laminate is shown in Fig.

8 along with the corresponding experimental results. Again, the theory has performed well in

representing the failure load over a wide range of crack lengths. The distance to the outer edge of

the damage zone as a function of load for three crack lengths is shown in Fig. 9. Comparing this

to the results in Fig. 6, we observe that the growth of the damage zone with applied load for this

laminate is considerably more gradual than that for the 13-ply laminate. Overall, the 15-ply

laminate exhibits less brittle behavior than does the 13-ply laminate as one would expect fi-om the

softening portion of their stress-strain curves.

6 CONCLUSION

In this study a progressive damage model for predicting failure loads in notched composite

laminates was developed. This was based on relatively simple, nordocal damage mechanics

incorporating strain-softening A two-dimensional finite element program was developed, and

calculations were performed for two different laminates under tensile loading. One laminate

exhibited "brittle" strain-softening response, and the other exhibited "ductile" strain-softening

response. The theory was shown to accurately predict failure of these laminates over a wide
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range of notch sizes. This approach clearly shows promise as a design tool for assessing damage

tolerance because it has the potential for studying the response of a structure after a crack has

begun to propagate. However, a number of issues need further study. These include the choice

of mathematical function used to represent the strain-softening portion of the stress-strain curve

and the effect of flexure. These topics will be addressed in future research.
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